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The present study addresses an optimization strategy for fiber reinforced composites, specifically Fiber
Reinforced Concrete (FRC) with a complex failure mechanism resulting from material brittleness of both
matrix and fibers and also from the nonlinear interfacial behavior between those constituents. A prom-
inent objective for this kind of composite is the improvement of ductility. The entire structural response
of this material strongly depends on three factors, (i) material layout of fiber on a small scale, (ii) fiber
geometry on the macroscopic structural level, and (iii) material parameters of interface between matrix
and fiber.

The purpose of the present study is to improve the structural ductility of FRC by applying optimization;
in the formulation not only the optimal material layout of fibers on the small scale but also the global
fiber geometry are determined simultaneously. The proposed method is achieved by combining multi-
phase material optimization and material shape optimization, separately introduced by Kato et al. [11]
and Kato and Ramm [12], respectively.

For the optimization problem a gradient-based optimization scheme is assumed. A method of moving
asymptotes (MMA) is applied because of its numerically high efficiency and robustness. The performance
of the proposed method is demonstrated by a series of numerical examples and compared with pure
material shape optimization. It is verified that the proposed method gives more efficient results than
the individual material shape optimization and that the structural ductility can be substantially
improved.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Overview

Nowadays textile fiber reinforced composites play a significant
role in design of advanced materials and structures, such as Fiber
Reinforced Polymers (FRP), Fiber Reinforced Metal (FRM), and Fiber
Reinforced Glass (FRG). The present study addresses a promising
composite material, namely Fiber Reinforced Concrete (FRC),
sometimes also called textile reinforced concrete. FRC consists of
fine grained concrete or mortar matrix and textile fiber mesh with
a relatively low fiber content making it economically attractive [7].
Mostly glass or carbon fibers are used. Unlike conventional steel
reinforcement this kind of textile fiber is corrosion free due to its
high alkali-proof; this property allows for the manufacturing of
light-weight thin-walled composite structures, see Fig. 1. However
the critical aspect of this composite is that the structural response
of FRC may result in brittle failure due to material brittleness of
both concrete and fiber in addition to complex interfacial behavior
between the constituents. The failure mechanism of FRC is highly
complex, e.g. influenced by matrix cracking, slip of filaments in a
roving, debonding of fibers from matrix and breaking of fibers,
see Schladitz et al. [27]. The specific characteristic of FRC is an ideal
target for optimization applying the overall structural ductility as
objective which ought to be maximized for a prescribed fiber vol-
ume. In this context the ‘structural ductility’ means ‘energy
absorption capacity’ which is measured by the internal energy
summed over the entire structure up to a prescribed displacement
of a dominant control point. For this objective it is of course not
sufficient to base the optimization process on a linear material
model, so that it is mandatory to consider material nonlinearities.

The structural response of FRC strongly depends on the follow-
ing parameters: fiber size, fiber length, fiber location/orientation,
impregnation, surface roughness of fiber, and the kind of fiber
material itself, see Kato et al. [9].

Kato et al. [11] introduce a multiphase material optimization to
improve the ductility of FRC with respect to fiber size, length and
the combination of different fiber materials. This approach is
considered as a material distribution problem derived from
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Fig. 1. FRC pedestrian bridge [5], FRC thin plate and textile fiber mesh [4], textile fiber in concrete matrix [8].
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conventional topology optimization using a fixed finite element
mesh, see Fig. 2. However it may encounter problems caused by
the specific modeling of fiber reinforced composites. The thickness
of fibers is in general very small and constant along the fiber
length; this requires ‘fine’ discretization and provides a strict lim-
itation in the discretization process.

In view of this problem a conventional ‘smeared-type element
concept’ assuming an anisotropic material seems to be reasonable
as used in, for example, Stegmann and Lund [29] and Stolpe and
Stegmann [30]. However smeared-type elements are not sufficient
for the present study because this approach concentrates more or
less on the fiber orientation defined at each finite element and has
less flexibility to deal with other design parameters mentioned
above. Furthermore this approach results in fibers which are dis-
continuous between adjacent elements, and do not reflect realistic
structural behavior especially for nonlinear response.

Therefore Kato and Ramm [12] propose an optimization meth-
odology, denoted material shape optimization, to improve the struc-
tural ductility of FRC with respect to the ‘fiber geometry’ which is
independent of the fixed finite element mesh. This approach allows
to represent ‘continuous long’ fibers by applying the so-called
(a)

Fig. 2. Concept of multiphase material optimizat

Fig. 3. Concept of material shape optimization, (a) conventional smeared-type e

Fig. 4. Concept of multiphase layout optimization, (a) material s
embedded finite element formulation, see Fig. 3. However it is
shown in Kato and Ramm [12] that this scheme does not always
exploit all fibers; it is caused by a local minimum typical for
non-convex optimization problems, see Fig. 4a. Consequently, this
demand motivates the development of a new class of material
optimization providing even more efficient optimal designs.

The purpose of the present study is to improve the structural
ductility of FRC by developing a more flexible and efficient material
optimization strategy. This approach is achieved by combining
above two optimization schemes, i.e. multiphase material and
material shape optimization. Therefore not only optimal fiber
geometry at the global level but also fiber size and kinds of fiber
materials are determined simultaneously, see Fig. 4b. In the pres-
ent paper this combined strategy is denoted multiphase layout
optimization.

For the material modeling a gradient-enhanced damage
formulation [24–26] is applied for both concrete and fibers, and a
discrete bond model [13–15,33] is used for the interface between
the constituents. In the model we apply the embedded reinforce-
ment element including the bond–slip kinematical relation by
Balakrishnan and Murray [1]; for the two-dimensional model a
ion, (a) initial and (b) optimized structures.

lement approach for fiber orientation and (b) material shape optimization.

hape optimization and (b) multiphase layout optimization.
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curved fiber geometry is allowed which is defined globally by
Bézier-splines.

The optimization problem is solved by a gradient-based optimi-
zation scheme. The method of moving asymptotes (MMA), see
Svanberg [31], is used because it provides relatively reliable opti-
mum solutions even for complex optimization problems. For the
sensitivity analysis a variational semi-analytical direct method is
used.

In the present paper several variables and functions are intro-
duced which are already introduced in Kato and Ramm [12]. For
the sake of compactness and avoiding duplication with [12],
several symbols are listed in Appendix A.

2. Applied material models

2.1. Material model for constituents concrete and fiber

The nonlinear material behavior of both concrete and fiber is
described by an isotropic continuum damage model. Firstly an
equivalent strain measure is defined. For the concrete matrix de
Vree’s definition [32] of equivalent strains ec

v is adopted as follows:

ec
vðI1; J2Þ ¼

k� 1
2kð1� 2mÞ I1 þ

1
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� 1Þ2

ð1� 2mÞ2
I2

1 �
12k

ð1þ mÞ2
J2

s
; ð1Þ

where I1 denotes the first invariant of the strain tensor and J2 the
second invariant of the deviatoric strain tensor. k indicates the ratio
of compression relative to the tension strength and m is Poisson’s ra-
tio. For the fiber we follow Mazars’s definition [21] since the fiber is
assumed to be a one-dimensional model

ef
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ef

L

D E2
r

; ð2Þ

where ef
L is the fiber strain. For the damage evolution of both con-

crete and fiber we use an exponential damage law introduced by
Mazars and Pijaudier-Cabot [21] as:

DðjÞ ¼ 1� j0

j
ð1� aþ ae�bðj�j0ÞÞ if j P j0; ð3Þ

where D stands for the damage parameter (0 6 D 6 1) (Fig. 5a), a
defines the final softening stage and b governs the rate of damage
growth. j0 is a threshold variable which determines damage initia-
tion shown in Fig. 5b and j represents the most severe deformation
the material has experienced during loading. In a conventional local
damage model, j is related to the local equivalent strain ev and the
history variable j is defined by the Kuhn–Tucker relations, i.e.
_j P 0; ev � j 6 0; _jðev � jÞ ¼ 0. For non-local damage, j is re-
lated to a weighted volume average of the local equivalent strain
ev, denoted as non-local equivalent strain ~ev . In the gradient-
enhanced damage model [24–26], ~ev is approximated implicitly as
follows:

~ev � cr2~ev ¼ ev ; ð4Þ
Fig. 5. (a) Exponential damage law and (b) corresponding uniaxial stress–strain r
c is a positive parameter of dimension length squared regularizing
the localization of the deformation. Thus in the Kuhn–Tucker equa-
tions ev is replaced by the non-local equivalent strain ~ev which is
discretized in the finite element sense. Elastic unloading is included
in the traditional way.

2.2. Material model for interface

The nonlinear interfacial behavior between fiber and matrix is
expressed by a discrete bond model, see Krüger et al. [13]. This
model was obtained by experiments using glass or carbon fibers
and expresses a realistic interface response of FRC. The significant
factors governing interfacial response are the bond strength and
the debonding behavior. The influence of material properties at a
small scale level and the stresses perpendicular to the fiber direc-
tion are included in the material formulation as important param-
eters. The bond stress–slip ri

L—ui
L

� �
relation is expressed as:

ri
L ¼ ~ui � bþ ð1� bÞ � 1

1þ ~uið ÞRs

 ! 1
Rs

8<:
9=; � r0 for ui

L 6 ui
1; ð5Þ

where ui
L is the slip length which will be introduced in Section 5.

~ui ¼ ui
L=ui

0 denotes the normalized slip. ui
0 is a factor defined by

the initial tangent k1. k2 is the tangent at slip ui
1 where the bond

stress achieves the maximum bond strength, see Fig. 5c. b = k2/k1

and r0 ¼ k1 � ui
0 are parameters to calculate the stresses and Rs de-

fines the radius of curvature at slip ui
1. The stress–slip relation for

the range ui
L > ui

1 is simply described by the adhesion strength rm

and the friction bond strength rf, see Fig. 5c

rm ¼ rm;0w; rf ¼ rf ;0w ð6Þ

with

w ¼ 1þ tanh ar
rR

0:1f c
� af mes 1� r2

s

ðrs þ hsÞ2

 !�1
24 35: ð7Þ

Here w denotes an additional parameter (1 < w < 2) which considers
the influence of the kind of fiber material, the loading condition and
the stresses perpendicular to a fiber direction. Further material
parameters for the interface are listed in Appendix A. For a detailed
description of this model it is referred to Krüger et al. [13–15]. In
this model loading and unloading conditions are also considered.

This one-dimensional interface model is originally formulated
for a fiber in a three-dimensional setting. If this model is utilized
in a two-dimensional space as in this study, the interface has to
be modified to hold the original total interface area.

3. Background: multiphase material and material shape
optimization

3.1. Multiphase material optimization

This section introduces a two-phase material optimization apply-
ing the described damage formulation. The present methodology is
esponse of damage model, (c) stress–strain relation of discrete bond model.
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strongly related to topology optimization, in particular to the Solid
Isotropic Microstructure with Penalization of intermediate densities
for a one-phase material, the so-called SIMP approach [2,34], and
to its generalization to multiphase topology optimization [28], for
example used for composite structures. The development of these
methods is briefly described in the sequel.

It is well known that the ‘0–1’ integer topology optimization
problem being a highly non-convex variational problem is ill-
posed. In order to remedy this defect many material models pro-
viding a regularization have been developed. The SIMP method is
the most popular model due to its numerical robustness.

In order to classify the present formulation within the multi-
phase optimization let us summarize the different concepts of
material distribution problems (Fig. 6).

In the SIMP approach normalized density (porosity) q1/q0

(0 6 q1/q0 6 1) is taken as the design variable and the intermediate
densities are used as mathematical vehicle to relax the ill-posed
problem during optimization, see Fig. 6a. The exponent g plays
the role of a penalization factor without a physical meaning even-
tually leading to a pure or at least an almost pure 0–1 layout for a
single material structure as depicted on the left side in the figure.
The concept of topology optimization may also be applied to a sin-
gle material for which intermediate densities physically exist, for
example polymer or metal foams. Here the porosity, limited by
upper and lower bounds, can be used as design parameter which
varies in different regions of the structure; the effective modulus
Ceff is often defined by a power-law formula, see for example Gib-
son and Ashby [6], Lipka [16], and Lipka and Ramm [17,18]. In this
extended approach g is a fitting variable rather than a penalization
parameter, which guarantees the physically admissible intermedi-
ate stage.

The same concept for topology optimization can be utilized if
two (or more) phases exist, i.e. when the void phase is replaced
by a second solid material, see structure shown in Fig. 6b. Also in
this multiphase version, intermediate stages in the sense of a phys-
ically existing smeared material on a small scale can be considered,
indicated as a two-phase mixture in Fig. 6b right. In the present
study this concept is applied in a slightly modified version. In fiber
reinforced concrete straight or curved long fibers are embedded in
the concrete matrix. As already indicated in Fig. 2a fixed finite ele-
ment mesh is used. It is decomposed into a mesh for the matrix,
not part of optimization, and a mesh for the design element layers.
These contain two (or three) phases, namely concrete and fiber(s),
which are combined to a material mixture. Within every layer
either each individual element, a group of several finite elements
or the entire layer is characterized by its own geometrical design
parameter s.

s ¼ r1=r0; ð8Þ
Fig. 6. Concept of multiphase material optimization (a) single material topology optimi
where r0 and r1 denote the height of a design element or the design
element layer and that of phase-2 in the element or the layer, respec-
tively. In this case the interpolation represents the material behavior
of a real mixture, macroscopically describing the constitutive behav-
ior of a material point or on a broader scale of a design element.

A function based on the volume fraction r1/r0 interpolates the
material stiffness, i.e. the effective stiffness Ceff of the composite
material between those of the two phases C1 and C2, see again
Fig. 6b. More refined interpolations may be applied, derived from
experiments or through homogenization.

The present study extends this multiphase material optimization
to materially nonlinear problems applying the above described
damage formulation with strain softening in order to consider a
more realistic physical behavior of FRC. Since the applied damage
formulation includes three extra material parameters, i.e. initial
equivalent strain j0 and exponential softening parameters a and
b shown in Eq. (3), in addition to Young’s modulus E for each mate-
rial, the interpolation of the mixture according to Fig. 6b is also ap-
plied to these additional parameters, namely

f ¼ ð1� sĝÞf1 þ sĝf2; ð9Þ

where f represents either one of the four material parameters de-
scribed above. f1 and f2 stand for the material properties of
phase-1 (e.g. concrete matrix) and phase-2 (e.g. fiber), respectively,
and are fixed values.

A closer look shows that Eq. (9) is not always sufficient to ex-
press the interpolation for all damage parameters since they have
their own characteristics. In order to understand the features of the
individual material parameters its relation to the present objective
f, the structural ductility, is considered.

The part of f for a material point is the area below the stress–
strain curve and increases if either Young’s modulus E or initial
equivalent strain j0 increases under the condition that all other
material parameters are kept constant, see Fig. 7a and b. On the
other hand the ductility decreases if either one of the softening
parameters a or b increases, see Fig. 7c and d.

Keeping this behavior in mind one can define related interpola-
tion rules. It is obvious that Eq. (9) is a reasonable interpolation for
the stiffness, namely the effective Young’s modulus if E1 6 E2, see
for example Bendsøe and Sigmund [3]. It is apparent that the stiffer
phase-2 has a dominant influence on the mixture expressed by a lar-
ger gradient at s = 1 than at s = 0, see Fig. 6b. Since j0 has essentially
the same tendency it makes sense to use the same interpolation Eq.
(9) also for this parameter, provided j01 6 j02 . The situation is re-
verse for both softening parameters a and b. Assuming again
f1 6 f2 phase-1 is the ‘‘leading’’ constituent requiring a larger gradi-
ent of the interpolation function at s = 0; therefore the power law has
to be concave and is expressed by
zation with SIMP approach and (b) multiphase material optimization (two-phase).



Fig. 7. Change of stress–strain relation of damage model with respect to one parameter increased under the condition that all other parameters are kept constant. (a) Young’s
modulus, E, (b) initial equivalent strain, j0, and (c) and (d) softening parameters, a and b.
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f ¼ ð1� sÞĝf1 þ 1� ð1� sÞĝ
h i

f2: ð10Þ

It may happen that for either of the four parameter f1 > f2. In
this case the interpolation functions (9) and (10) have to be inter-
changed. Let us summarize the interpolation rules:

f ¼

ð1� sĝÞf1 þ sĝf2 for f :

E; j0 ðf1 6 f2Þ
or
a; b ðf1 > f2Þ

8><>:
ð1� sÞĝf1 þ ½1� ð1� sÞĝ�f2 for f :

E; j0 ðf1 > f2Þ
or
a; b ðf1 6 f2Þ

8><>:

8>>>>>>>>><>>>>>>>>>:
ð11Þ

Note that it is not necessarily required that the same value of
the fitting parameter ĝ is used for all four parameters. The detailed
description including the extension to a three-phase composite is
referred to Kato [10], Kato et al. [11].

3.2. Material shape optimization

The geometry of a continuous long fiber is defined in the global
coordinate system. Hooks of textile fibers are not used. Due to this
characteristic the layout of textile fibers in FRC can be rather sim-
ple, often parallel fibers or a mesh of straight fibers are used, see
Fig. 1. Curved fibers are advantageous if an optimal structural re-
sponse is looked for.
Fig. 8. (a) Quadratic Bézier-spline and (b) co
In this study the fiber geometry is defined globally by Bézier-
splines. A quadratic Bézier-spline and its mathematical formula-
tion are introduced in Fig. 8, where r stands for a position vector
of the spline; # (0 6 # 6 1) is the local coordinate system of the
spline. pj indicates the jth control point.

The fiber is embedded in the structure and the control points of
the splines are moved in order to obtain the optimal fiber layout.
The entire domain of the structure is defined in a parametric space
s (0 6 s 6 1), see Fig. 8. Thus the normalized coordinates of control
points are taken as the design variables defining the global fiber
geometry in the physical space. The jth position vector of control
point pj can be expressed as follows:

rj sx
j ; s

y
j

� �
¼ Oðx̂; ŷÞ þ sx

j Lx; s
y
j Ly

� �
; ð12Þ

where O stands for the coordinate origin of the structure; x̂; ŷ are
the corresponding global coordinates of O. L denotes the contour
lengths of the structure and the scripts x, y on L as well as s indicate
the direction. Inserting Eq. (12) into the general mathematical for-
mulation of Bézier-splines leads to the geometric definition of a fi-
ber including the design variables ŝ as follows:

rð#; sx; syÞ ¼
Xnb

j¼0

Ujð#Þrj sx
j ; s

y
j

� �
with Uj ¼

nb!

ðnb � jÞ!j!#
jð1� #Þnb�j

;

ð13Þ

where nb is the order of the Bézier-spline. Note that the coefficients
U are independent of the design variables ŝ.
ncept of global layout of fiber geometry.
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Once the fiber geometry is defined by Eq. (13) the global coor-
dinates for intersections of fibers and mesh are determined in or-
der to establish the stiffness matrix and afterwards the internal
forces of embedded fiber elements. This procedure is detailed in
Kato and Ramm [12]. For further processing of the fiber mechanics
the curved fiber in one finite element is for simplicity approxi-
mated by a straight line leading to a polygonal layout as indicated
in Fig. 10.
4. Multiphase layout optimization

4.1. Basic concept

Multiphase layout optimization is formulated by combining
multiphase material optimization and material shape optimiza-
tion. Fig. 9 describes the notation of the design variables for two-
and three-phase fibers based on the embedded reinforcement for-
mulation. For the two-phase fiber, phase-1 indicates ‘no material’
and phase-2 is ‘fiber material’. For the three-phase fiber, phase-1,
-2, and -3 stand for no material, fiber 1, and fiber 2, respectively.
In the latter case a fiber consists of two different fiber materials.

In multiphase material optimization the prescribed constant fi-
ber thickness r0 is defined as the thickness of a design element in
the fixed FE-mesh (Figs. 2 and 6) while in this study r0 is the pre-
scribed maximum thickness of an embedded fiber with a geometry
independent of the fixed FE-mesh. In the two-phase fiber r1 is the
thickness of the ‘fiber’ while in the three-phase fiber r1 describes
the total fiber thickness of fiber 1 and fiber 2 and r2 is the thickness
of fiber 2. The fiber thicknesses r1, r2 can vary during optimization
but are assumed to be constant along the entire fiber length in
space.

The design variables ŝ consist of the two kinds of variables ŝr

and ŝg . For convenience ŝr are called ‘material design variables’
and ŝg ‘shape design variables’, respectively. As can be seen in
Fig. 9, the concept of volume fraction is applied for the material de-
sign variable, i.e. sr = r1/r0 for the two-phase fiber, sr1 ¼ r1=r0 and
sr2 ¼ r2=r1 for the three-phase fiber. sr and sr1 control the effective
material parameters between ‘no-material’ and ‘fiber(s)’ and sr2 de-
scribes the effective material parameters of ‘mixture’ between fiber
1 and fiber 2 (0 6 sr; sr1 ; sr2 6 1). The fiber fills with ‘no-material’ if
sr = 0 or sr1 ¼ 0. This situation means that the fiber has no mechan-
ical property and does not influence the structural response
g

Fig. 9. Concept of present approach a
although the geometry of the fiber still remains. This ‘no-material’
fiber does not provide any ‘defect’ of volume of the concrete matrix
because fibers are simply superimposed on the concrete matrix in
the embedded reinforcement formulation.

The shape design variables ŝg are identical to those of material
shape optimization, which stand for the normalized coordinates of
control points of the global fiber geometry. lf in Fig. 9 is the length
of a single fiber within an embedded reinforcement element and
depends indirectly on the shape design variables ŝg .

In the sequel the effective material parameters are discussed
considering the characteristics of material design variables.

4.2. Two-phase fiber

The chosen embedded two-phase fiber may contain layers with
‘no material’. This is different from the two-phase material of mul-
tiphase material optimization in which both phases are assumed to
be solid materials.

Considering this difference, it is of course possible to interpret
the present two-phase fiber as a ‘single material fiber’ using fiber
thickness r1 as material design variable sr. If one applies the two-
phase interpolation rules Eq. (11) for the effective material param-
eters by inserting ‘zero’ to all material properties of phase-1, i.e.
f1 = 0, with a linear interpolation factor ĝ ¼ 1 the effective material
parameter f for the two-phase fiber is reduced from Eq. (11) to

f ¼ srf2; ð14Þ

where f2 stands for all four material properties of phase-2 as intro-
duced in Section 3.1, i.e. E2, j02, a2, and b2. Both procedures provide
fundamentally the same structural properties. For instance, the ele-
ment stiffness matrix of an embedded fiber can be reformulated
considering Eq. (85) in Kato and Ramm [12] as follows:

Kf
e ¼

Z
Xf

n

Bf T
C

f
eff|{z}

¼srC
f
2

Bf jJf j|{z}
¼r0 lf

dXf
n ð15Þ

¼
Z

Xf
n

Bf T
C

f
2Bf jJf j|{z}

¼r1 lf

dXf
n; ð16Þ

where some subscripts have been eliminated from Eq. (85) of Kato
and Ramm [12] for simplicity. C

f
eff is the matrix of the effective elas-

to-damage secant material stiffness for the two-phase fiber and C
f
2

nd notation of design variables.
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is that of the individual fiber (phase-2). Eq. (15) indicates the
expression using the two-phase interpolation rule Eq. (14) while
Eq. (16) expresses the simplified formulation, in which jJfj absorbs
the design variable sr or r1 instead of C

f
eff .

Consequently, this two-phase fiber is simply transformed to the
single material of phase-2 with real fiber thickness r1 which varies
during optimization depending on the design variable sr. The deter-
minant of Jacobian jJfj represents the real fiber volume of an
embedded fiber and depends on both sg and sr. This transformation
considerably reduces the derivation process of sensitivities for the
‘material design’ part because all terms in Eq. (16) except jJfj do not
depend on the material design variable sr.

4.3. Three-phase fiber

The concept of the three-phase fiber follows that of the two-
phase fiber. Inserting f1 = 0 and ĝ ¼ 1 into the interpolation rule
between phase-1 (no material) and the mixture (f23) of phase-2
and -3 in Eq. (15) of Kato et al. [11] and rearranging the formula-
tion yields the following reduced expression:

f ¼

sr1 1� sĝ
r2

� �
f2 þ sĝ

r2
f3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f23

8>><>>:
9>>=>>; for f :

E; j0 ðf2 6 f3Þ
or
a; b ðf2 > f3Þ

8><>:
sr1 ð1� sr2 Þ

ĝf2 þ 1� ð1� sr2 Þ
ĝ

h i
f3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f23

8>><>>:
9>>=>>; for f :

E; j0 ðf2 > f3Þ
or
a; b ðf2 6 f3Þ

8><>:

8>>>>>>>>>>><>>>>>>>>>>>:
ð17Þ
u ¼

sr1 1� sĝ
r2

� �
u2 þ sĝ

r2
u3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u23

8>><>>:
9>>=>>; for

all except m ðu2 6 u3Þ
or
m ðu2 > u3Þ

8><>:
sr1 ð1� sr2 Þ

ĝu2 þ ½1� ð1� sr2 Þ
ĝ�u3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u23

8><>:
9>=>; for

all except m ðu2 > u3Þ
or
m ðu2 6 u3Þ

8><>:

8>>>>>>>>>><>>>>>>>>>>:
ð21Þ
where f23 indicates the effective material parameter of phase-2 and
phase-3 as well. The fitting parameter ĝ – 1 in Eq. (17) is intro-
duced for the interpolation between phase-2 and phase-3; it is
not necessarily required that the same value of ĝ is used for all four
parameters as mentioned in Section 3.1.

Similarly, the system of element stiffness matrix of the three-
phase fiber is expressed as:

Kf
e ¼

Z
Xf

n

Bf T
C

f
eff|{z}

¼sr1 C
f
23

Bf jJf j|{z}
¼r0 lf

dXf
n ð18Þ

¼
Z

Xf
n

Bf T
C

f
23Bf jJf j|{z}

¼r1 lf

dXf
n; ð19Þ

where C
f
eff stands for the effective elasto-damage secant material

stiffness of the three-phase fiber and C
f
23 is that of two-phase fiber

consisting of phase-2 and phase-3. C
f
23 is controlled by the second

material design variable sr2 . In this case sr1 is included into the
determinant of Jacobian matrix jJfj. Thus jJfj in the three-phase fiber
depends not only on the shape design variable sg but also on the
material variable sr as for the two-phase fiber.

Incidentally we describe the concept of three-phase fiber in this
section considering its potential idea as demonstrated by Kato et al.
[11] although no numerical example for it is shown in the present
paper. In our preliminary numerical examples for the three-phase fi-
ber using AR-glass (alkali resistance glass) and carbon, the proposed
algorithm itself shows good performance as we expect, however it
gets inaccurate sensitivity when sudden failure of the structure
(steep strain softening) is allowed. This is an other problem to that
we care and a typical problem resulting from the rigid body rotation
introduced by Olhoff and Rasmussen [22] or Olhoff et al. [23] when a
variational semi-analytical approach is utilized in sensitivity analy-
sis. Taking this situation into account, we describe the basic concept
and formulations of the three-phase fiber in this section.

4.4. Interpolation rule for interface

The interpolation rule for the interface follows the previous sec-
tion. According to Eq. (14) the effective interfacial parameter u for
the two-phase fiber can be written as:

u ¼ sru2; ð20Þ

where u stands for all interfacial material parameters relevant to
fiber materials introduced in Section 2.2, i.e. rm;0;rf ;0; k1; k2; ksec;

ui
2;u

i
3;hs;Rs and m. u2 represents the material properties of phase-2.

Note that other data mentioned in Section 2.2, i.e. the compression
strength of concrete fc, the coefficients ar and af, are constants and inde-
pendent of the volume fraction of fiber materials. This interpolation rule
indicates that if the material design variable sr is zero, i.e. ‘no material’,
the mechanical response of interface vanishes simultaneously.

Analogously, the effective interfacial parameter u for the three-
phase fiber is assumed as follows:
where u2 and u3 indicate the interfacial material properties of
phase-2 (fiber 1) and phase-3 (fiber 2), respectively. All effective
interfacial parameters u except for Poisson’s ratio m have a similar
characteristic as E and j0 in Eq. (17) while m follows the behavior of
a and b. Up to now very little is known about this ‘mixture’ of inter-
faces. Thus physically reliable fitting parameters ĝ for each effec-
tive parameter need to be investigated by experiments or
homogenization.

Again the determinant of Jacobian matrix for interface jJij de-
pends on the shape design variable sg as well as on the material de-
sign variable sr.
5. Embedded reinforcement element

5.1. Kinematical assumption for interface between concrete and fiber

The embedded reinforcement element (Fig. 10a) applied in this
study considers a bond–slip relation between concrete and fiber.
We introduce the kinematical relation of the interface based on
the assumption by Balakrishnan and Murray [1]. In the kinematical
assumption the slip at an arbitrary point is considered as the rela-
tive displacement between concrete and fiber measured along the



(a) (b)
Fig. 10. (a) Embedded reinforcement element patch and (b) notion for displacements of slip.
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axis of the fiber. The components of the displacements can be writ-
ten as:

uf
L ¼ uc

L þ ui
L; ð22Þ

where ui
L is the slip length or relative displacement introduced in

Eq. (5). uf
L and uc

L are the displacements of fiber and concrete at
the considered point, respectively, see Fig. 10b. The slip values of
the originally curved fiber at the intersection of two adjacent ele-
ments have to be equal; this is not the case for the polygonal geom-
etry assumed above. In order to satisfy the compatibility at least in
an average sense the slip length ui

L is projected onto the global x-
axis

�d ¼ cos h � ui
L ! ui

L ¼ �t�d with �t ¼ ðcos hÞ�1
; ð23Þ

where h is the angle between fiber axis and x-axis, see Fig. 10. Thus
the compatibility of the slip-length is enforced for �d. From ui

L the lo-
cal bond strain ei

L is obtained which in turn leads to the local fiber
strain ef

L

ef
L ¼ ec

L|{z}
Te

1e
c
G

þei
L: ð24Þ

Matrix Te transforms the global strain eG of a two-dimensional con-
tinuum into the local one eL under plane stress condition, see
Appendix A in Kato and Ramm [12]. Te

1 represents the first row of
Te extracting the local strain ec

L in fiber direction from the global
concrete strain ec

G.

6. Finite element formulation of FRC

6.1. Discretized principle virtual work

Since the present study applies a gradient enhanced damage
model for both concrete and fibers and uses a nonlinear interface
model between fiber and matrix, the virtual work dW is decom-
posed into

dW ¼ dW int � dWext ¼ dWc
int þ dWf

int þ dWi
int � dWext ¼ 0; ð25Þ

where dWc
int; dWf

int, and dWi
int stand for the internal virtual work of

concrete, fibers and interfaces, respectively, and dWext denotes the
external virtual work. The lengthy derivation of each virtual work
expression and all formulations are shifted to Kato and Ramm [12].

The virtual work expressions in Section 5.1 of [12] contain three
independent variables, namely the displacement field in the con-
crete element u, the non-local equivalent strain ~ev and the slip
length ui

L which are discretized in the finite element sense. In the
present study a two-dimensional eight-node quadratic plane stress
element is applied for the concrete matrix. The non-local strain is
discretized by bilinear shape functions within this element. Note
that the interface slip is discretized as a three-node quadratic
one-dimensional element (ni = 3), whereas the non-local strain
enhancement of the fibers is only linearly interpolated based on
the two values at the fiber beginning and end obtained from the
non-local strain values in the concrete element

u ¼
Xnc

k¼1

Nkdk or u ¼ Nd; ð26Þ

~ev ¼
Xne

k¼1

eNkek or ~ev ¼ eNe; ð27Þ

ui
L ¼

Xni

k¼1

Ni
k ui

L

� �k ¼
Xni

k¼1

Ni
kð�t�dÞk ¼

Xni

k¼1

Nk
�dk or ui

L ¼ N�d; ð28Þ

where d is a vector with eight nodal displacements, e with four no-
dal values and �d contains three nodal slip values.

The three nodal values of the projected slip lengths are summed
in the vector �d

�d ¼ ½�d1 �d2 �d3�T : ð29Þ

N contains the shape function for the interface defined in the global
coordinate system. Analogously the local bond strain ei

L of Eq. (24)
in one element can be expressed as:

ei
L ¼

Xni

k¼1

Bi
kð�t�dÞk ¼ �tBi �d ¼ B�d; ð30Þ

where Bi and B stand for B-operator matrices for the interface de-
fined in local and global coordinate systems, respectively. The local
fiber strain ef

L can be written according to Eq. (24)

ef
L ¼ Te

1e
c
G þ ei

L ¼ Te
1Bf dþ B�d: ð31Þ

Introducing Eqs. (26),(27),(28),(30) and (31) into the virtual
work expressions at the actual time t + 1 leads to

dWu ¼ dWc
u;int þ dWf

u;int � dWext 8 dd

¼
[nele

e¼1

ddT
Z

Xc
BcT

rcdXc|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fc

int;u

þ
Z

Xf
Bf T

Te
1

� �Trf
L dXf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ff
int;u

� ktþ1

Z
C

NcT t0 dC|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fext

266664
377775

¼ 0

ð32Þ
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dWe ¼ dWc
e þ dWf

e 8 de

¼
[nc

ele

e¼1

deT
Z

Xc
ðeBcÞTscdXc þ

Z
Xc
ðeNcÞT ~ec

v � ec
v

� �
dXc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fc
int;e

266664
377775

þ
[nf

ele

e¼1

deT
Z

Xf
ðeBf ÞT Td

1

� �T
sf

LdXf þ
Z

Xf
ðeNf ÞT ~ef

v;L � ef
v;L

� �
dXf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ff
int;e

266664
377775 ¼ 0

ð33Þ

dWi
int ¼

[ni
ele

e¼1

d�dT
Z

Xf
BTrf

L dXf þ
Z

Xi
NTri

L dXi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fi

int;i

266664
377775 ¼ 0 8 d�d; ð34Þ

where ‘time’ t simply means the ‘loading step number’ for a nonlin-
ear static problem.

Bc is the usual kinematic operator matrix; eBc is derived from the
gradient of the non-local equivalent strain

r~ec
v ¼ eBce; ð35Þ

and eBf that of the corresponding part in the fiber

r~ef
v;L ¼ Td

1r~ef
v;G ¼ Td

1
eBf e; ð36Þ

where Td
1 is the first row of a rotation matrix Td. k inserted in

Eq. (32) denotes the load factor with respect to a reference traction
load t0.

6.2. Element matrices

Introducing damage and interface models into the virtual
work expressions and linearizing with respect to the primary
variables d, e and �d leads after assembly to the stiffness
expression

Kcþf
dd Kcþf

de Kf
d�d

Kcþf
ed Kcþf

ee 0

Kf
�dd

0 Ki
�d�d

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KT

n

Dd
De
D�d

264
375

|fflfflffl{zfflfflffl}
Du

nþ1

¼ �
fc

int;u þ f f
int;u � fext

fc
int;e þ f f

int;e

f i
int;i

2664
3775

n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

; ð37Þ

where KT, Du and R are the tangential stiffness matrix, the incre-
mental displacement/strain vector and the residual force vector,
respectively. The superscripts n and n + 1 on the matrix and vectors
indicate the iteration number in the increment. For the derivation of
the corresponding stiffness matrices in KT and the forces in R it is
referred to Appendices in Kato and Ramm [12].

7. Structural optimization of FRC

7.1. Optimization problem

In general an optimization problem is defined by an objective
f ðŝÞ, equality constraints hðŝÞ and inequality constraints gðŝÞ. In
this study the objective is to maximize the structural ductility
for a prescribed fiber volume. As the ductility is defined by the
internal energy summed up over the entire structure with a pre-
scribed nodal displacement d̂j [19,20], the mathematical formu-
lation of the optimization problem of FRC can be written as
follows:
minimize f ðŝÞ ¼ �
Z

Xc

Z
êc

rcdec dXc þ
Z

Xf

Z
êf

L

rf
Ldef

L dXf

"

þ
Z

Xi

Z
ûi

L

ri
Ldui

L dXi

#
ð38Þ

subject to gðŝÞ ¼
[nf

ele

e¼1

Z
Xf

n

jJf j|{z}
r1 lf

dXf
n � V̂ 6 0 ð39Þ

ŝL 6 ŝri
6 ŝU i ¼ 1; . . . ;nsr ð40Þ

ŝL 6 ŝgi
6 ŝU i ¼ 1; . . . ;nsg ð41Þ

ŝ ¼ ŝr [ ŝg ð42Þ

where bV denotes the prescribed fiber volume. nsr denotes the num-
ber of the design variables for ŝr and nsg for ŝg , respectively.

7.2. Equilibrium conditions and total derivative of design function

The sensitivities of the design functions (objective, constraints,
etc.) depend on the gradients of the state variables uðd; e; �dÞ. These
are derived from the three equilibrium conditions (15), (17), and
(21) in [12] at time t + 1.

The total derivative of the design functions with respect to the
design variables can be decomposed into an explicit and an impli-
cit part. As indicated the design functions depend on the structural
response which in turn is implicitly related to the optimization
variables, for example the objective f ¼ f ðs;uðd; e; �dÞÞ. This leads to

rsð�Þ ¼ rex
s ð�Þ þruð�Þrsu

¼ rex
s ð�Þ þrdð�Þrsdþreð�Þrseþr�dð�Þrs

�d; ð43Þ

In this case the derivatives of the constraint tend to become
highly nonlinear with respect to the design variables because dif-
ferent classes of design variables are involved. For this the method
of moving asymptotes based on Svanberg [31] is applied to solve
the present optimization problem.

8. Sensitivity analysis

8.1. Overview of sensitivity analysis

The main effort of sensitivity analysis is the calculation of impli-
cit partrsu. For a direct sensitivity analysis this part is obtained by
exploiting the stiffness expression containing the tangent stiffness
matrix and the so-called pseudo load vector, see Eq. (68). This
pseudo load vector is obtained through the derivatives of the equi-
librium conditions, (15), (17), and (21) in [12] with respect to the
design variables and by assembling the individual pseudo load vec-
tors for each equilibrium condition. For this the gradients of consti-
tutive equations and also the explicit part of the derivative of
objective function are described first in the next two sections.

In this section the derivation of sensitivity with respect to the
material design variable ŝr is described; the sensitivity with respect
to shape design variable ŝg is given in [12].

8.2. Gradients of constitutive equations

This section introduces the gradients of constitutive equation
with respect to the material design variable ŝr .

Firstly, the derivatives of the strains, displacements, local and
non-local equivalent strains with respect to the material design
variable ŝr are discussed. These derivatives are compiled in [12];
all explicit terms of Eqs. (37), (39)–(41) and (43)–(48) in the refer-
ence vanish for the case of material design variables because the
‘geometrical’ functions Nc=f ; Bc=f ; eNc=f ; eBc=f ; N; B; Td

1, and Te
1 do

not depend on the material design variables.
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The main variables of the damage models for concrete, fibers
and interface depend on the material design variable ŝr in the fol-
lowing way:

r ¼ rðD; CðEðŝrÞ; mðŝrÞÞ; eðŝrÞÞ; ð44Þ
D ¼ Dðj; j0ðŝrÞ; aðŝrÞ; bðŝrÞÞ; ð45Þ
j ¼ jð~evðeðŝrÞÞ; juðeuðŝrÞÞÞ; ð46Þ
ri

L ¼ ri
L ui

LðŝrÞ; ui
Lu
ðŝrÞ; uðŝrÞ

� �
: ð47Þ

Eqs. (44)–(46) cover both concrete and fibers. Here ju, eu, and ui
Lu

denote history variable, nodal non-local strain vector, and slip
length at the time tu, respectively, when unloading starts.

Utilizing the above equations the stress derivatives of concrete
matrixrsr

c, fiberrsrf
L, and interfacersri

L with respect to a mate-
rial design variable ŝr at time t + 1 are introduced as follows:

rsr
c ¼ @r

c

@ec

@ec

@s
þ @r

c

@~ec
v

@~ec
v

@s
þ @r

c

@jc
u

@jc
u

@s

¼ Cc
edrim

s ec þ Ecrim
s

~ec
v þ �Ecrsjc

u|fflfflfflffl{zfflfflfflffl}
explicit

; ð48Þ

rsrf
L ¼

@rf
L

@ef
L

@ef
L

@s
þ @rf

L

@~ef
v;L

@~ef
v;L

@s
þ @r

f
L

@jf
u

@jf
u

@s
þ @r

f
L

@Df

@Df

@s
þ @rf

L

@Cf
el;L

@Cf
el;L

@s

¼ C
f
ed;Lr

im
s ef

L þ Efrim
s

~ef
v ;L þ �Efrsjf

u þ Gf|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
explicit

; ð49Þ

rsri
L ¼

@ri
L

@ui
L

@ui
L

@s
þ @ri

L

@ui
Lu

@ui
Lu

@s
þ @r

i
L

@u
@u
@s

¼ kLrim
s ui

L þ kLursui
Lu
þ Gi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

explicit

; ð50Þ

with the abbreviations

Gf � @rf
L

@Df

@Df

@jf
0

@jf
0

@s
þ @Df

@af

@af

@s
þ @Df

@bf

@bf

@s

 !
þ @rf

L

@Cf
el;L

@Cf
el;L

@Ef

@Ef

@s
þ
@Cf

el;L

@mf

@mf

@s

 !
;

ð51Þ

Gi � @ri
L

@u
@u
@s

; ð52Þ

where s describes the material design variable ŝr . Gf and Gi denote
the explicit parts of stress derivative for fibers and interface, respec-
tively, relevant to a mixture of phase-2 and -3.

Thus these terms vanish if the ‘two-phase fiber’ (no-material
and one fiber) is used. If the three-phase fiber is adopted, the elas-

to-damage secant material tensor C
f
ed;L needs to be replaced by the

‘effective’ elasto-damage secant material tensor C
f
ed;L

� �
23

; it is ob-

tained by an interpolation between those of phase-2 and -3.
Further abbreviations are

Ec � @r
c

@~ec
v

and Ef � @rf
L

@~ef
v;L

: ð53Þ

Ec=f are detailed in Eqs. (80)/(89) in [12]. C
c=f
ed is the elasto-damage

secant material tensor, see Eq. (83) in [12].
The last abbreviations are terms relevant to ‘un-/reloading’,

�Ec � @rc

@jc
u
¼ @rc

@Dc
@Dc

@jc

@jc

@jc
u

and �Ef � @rf
L

@jf
u

¼ @r
f
L

@Df

@Df

@jf

@jf

@jf
u

ð54Þ

with

@jc=f

@jc=f
u

¼
0 if loading
1 if un-=reloading:

�
ð55Þ

Ec=f are relevant to ‘loading’ and are non-zero; �Ec=f vanish under
loading. On the contrary Ec=f become zero and �Ec=f are non-zero
for un-/reloading. The remaining terms in Eq. (54) arerjDc/f, which
are calculated by following Eq. (3). The derivatives rsjc=f

u in Eqs.
(48) and (49) and rsui

Lu
in Eq. (50) are obtained in terms of Eqs.

(44) and (47) and Eq. (41) in [12], respectively,

rsjc
u ¼ eNcrseu; rsjf

u ¼ eNfrseu; ð56Þ

rsui
Lu
¼ Nrs

�du; ð57Þ

where �du is the nodal slip length at the time tu. Note that eu

and �du need to be updated whenever ‘loading’ occurs. kL in Eq.
(50) denotes the tangent modulus of the interface which is
explicitly obtained from Eq. (5) and Fig. 5c introducing the given
material properties. kLu is the tangent modulus of the interface
at the time tu.

8.3. Sensitivity for explicit term of objective function

The explicit part of sensitivity of the objective function is ex-
pressed as follows:

rex
s f ¼ rex

s ðf c þ f f þ f iÞ ð58Þ

with

rex
s f c ¼ �

Z
Xc

Z
êc
rex

s ðrcÞdec dXc; ð59Þ

rex
s f f ¼ �

Z
Xf

Z
êf

L

rex
s rf

L

� �
def

L þ rf
Lrex

s def
L

� �
dXf

�
Z

Xf
n

Z
êf

L

rf
Ldef

LrsjJf jdXf
n; ð60Þ

rex
s f i ¼ �

Z
Xi

Z
ûi

L

rex
s ri

L

� �
dui

L þ ri
Lrex

s dui
L

� �
dXi

�
Z

Xi
n

Z
ûi

L

ri
Ldui

LrsjJijdXi
n: ð61Þ

The second terms in Eqs. (60) and (61) are integrated in the
parametric space n.

Most often rex
s f c is zero because the functions for concrete, e.g.

shape functions and B-operators, are independent of the design
variables as mentioned above. Thus the explicit parts of all deriva-
tives for the concrete matrix vanish. rex

s f c becomes non-zero only
when unloading starts at a concrete element in which damage has
already been initiated, see the last term of Eq. (48).

The determinants of Jacobian matrices jJfj and jJij for fiber and
interface elements map the parametric element domains onto their
real space. The stress derivatives rex

s rf
L and rex

s ri
L are the explicit

parts of Eqs. (49) and (50), respectively.
In the following sections the implicit part of sensitivity of the

objective function is discussed.

8.4. Calculation of sensitivity coefficients

The derivative of the first equilibrium condition Eq. (16) in [12]
with respect to a design variable ŝr is obtained considering Eq. (32).
As mentioned the ‘geometrical’ functions do not depend on a
‘material’ design variable ŝr . Thus the terms which contain the
derivative of the geometrical functions vanish:Z

Xc
BcTrsðrcÞdXc þ

Z
Xf

Bf T
Te

1

� �Trs rf
L

� �
dXf

þ
Z

Xf
n

Bf T
Te

1

� �Trf
LrsjJf jdXf

n �rsktþ1

Z
Cn

NcT t0jeJjdCn|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
P

¼ 0: ð62Þ
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Substituting Eqs. (48) and (49) into Eq. (62) results in

Kc
ddrsdþ Kf

ddrsdþ Kf
d�d
rs

�dþ Kc
derseþ Kf

derse

¼ rsktþ1P� ePd
5 � ePd

6 � ePd
7 �

Z
Xf

Bf T
Te

1

� �T Gf dXf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ePd
8

; ð63Þ

where all stiffness matrices, the load vector P, and the pseudo load
vectors ePd

5 to ePd
7 in Eq. (63) are common to those of material shape

optimization. For these formulas and also for the pseudo load vec-
tors for the second and third equilibrium equations mentioned be-
low it is referred to [12]. ePd

8 denotes an additional pseudo load
vector which vanishes if the two-phase fiber is applied.

Analogously the derivative of the second equilibrium condition
Eq. (17) in [12] with respect to a design variable ŝr is obtained con-
sidering Eq. (33). Deleting the terms which include the derivative
of the geometrical functions and inserting Eqs. (43)–(48) from
[12] into the obtained derivative of the equilibrium condition Eq.
(17) in [12] yields

Kc
eerse� Kc

edrsdþ Kf
eerseþ Kf

edrsd ¼ �ePe
3: ð64Þ

All stiffness matrices and ePe
3 in Eq. (64) are common to those of

material shape optimization.
Similarly the derivative of the third equilibrium condition Eq.

(20) in [12] is obtained considering Eq. (34)Z
Xf

BTrsrf
L dXf þ

Z
Xf

n

BTrf
LrsjJf j dXf

n þ
Z

Xi
NTrsri

L dXi

þ
Z

Xi
n

NTri
LrsjJij dXi

n ¼ 0: ð65Þ

The bond–slip relation Eq. (5) does not include any term related
to the non-local equivalent strain, thus the non-local term is ex-
cluded from Eq. (49):

rsrf
L ¼ C

f
ed;Lr

im
s ef

L þ Gf : ð66Þ

Substituting Eqs. (50) and (66) into Eq. (65) yields:

Ki
�d�drs

�dþ Kf
�dd
rsd ¼ �eP�d

3 � eP�d
6 � eP�d

7 �
Z

Xf
BT Gf dXf|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}eP�d

8

�
Z

Xi
NT Gi dXi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}eP�d

9

;

ð67Þ

where the pseudo load vectors eP�d
3;
eP�d

6 and eP�d
7 in Eq. (67) are equiv-

alent to those of material shape optimization. eP�d
8 and eP�d

9 denote ex-
tra pseudo load vectors and vanish again if the two-phase fiber is
applied.

8.5. Total sensitivity

Assembling Eqs. (63), (64) and (67) for multiphase material
optimization and Eqs. (58), (59) and (63) from [12] for material
shape optimization leads to the following compact matrix
expression

Kcþf
dd Kcþf

de Kf
d�d

Kcþf
ed Kcþf

ee 0

Kf
�dd

0 Ki
�d�d

2664
3775 rsd
rse
rs

�d

264
375 ¼ rsktþ1

P
0
0

264
375�

P4
l¼1
ePd

lP2
l¼1
ePe

lP5
l¼1;l–3

eP�d
l

2664
3775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Pg

�

P7
l¼5
ePd

lePe
3eP�d

3 þ eP�d
6 þ eP�d

7

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pgþr

�
ePd

8

0P9
l¼8
eP�d

l

264
375

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Pr

;

ð68Þ
where Pg, Pr, and Pg+r denote the pseudo load vectors with respect
to a shape design variable ŝg , a material design variable ŝr , and both
ŝg and ŝr , respectively. Pg is zero when the derivatives with respect
to the material design variable ŝr are calculated while Pr vanishes
when the derivatives with respect to the shape design variable ŝg

are determined or when the two-phase fiber is applied. The com-
mon pseudo load vector Pg+r is relevant to the derivatives of the
determinants of Jacobian rsjJfj and rsjJij which depend on both,
ŝg and ŝr .

Eq. (68) has the format of the typical stiffness equation adding
up all terms on the right hand side to a pseudo load vector Ppse:

KTrsû ¼ Ppse ¼ rsktþ1P̂þ ePpse: ð69Þ

The tangential stiffness matrix is KT is the same regardless of
the selected design variables. Thus the present sensitivity analysis
which includes two kinds of design variables is solved by switching
only to the respective pseudo load vector depending on the se-
lected design variables.

The next question is how to deal with the derivative of the load
factor rsk. Note that the derivatives based on a load-controlled
algorithm differ from those based on a displacement-controlled
scheme related to a certain nodal displacement ‘component’
uj ¼ ûj of the structure for the optimization of ductility [19,20]. A
load-controlled algorithm rendersrsk = 0 while for a displacement
controlled algorithm the sensitivity of the nodal displacement for
the controlled degree of freedom ûj is equal to zero. For this case
the sensitivity of the load factor is derived subsequently,

rsûj ¼ rsktþ1
�uj

ktþ1
þ rsûj
� �

pse ¼ 0; ð70Þ

where ŭj and ðrsûjÞpse are the jth component of vectors �u and
ðrsûÞpse is expressed as:

�u ¼ K�1
T ktþ1

bP; ð71Þ
ðrsûÞpse ¼ K�1

T
ePpse: ð72Þ

Substituting �uj and ðrsûjÞpse into Eq. (70) yields

rsktþ1 ¼ �
ðrsûjÞpse

�uj
ktþ1: ð73Þ

According to the above equations the derivative of the total no-
dal displacement vector rsû is calculated as follows:

rsû ¼ �u
rsktþ1

ktþ1
þ ðrsûÞpse: ð74Þ

Finally, the total sensitivity of the objective function can be ob-
tained by inserting Eq. (74) into Eq. (43) and accumulating each
sensitivity over the load increment step number nstep as:

rsf ¼
Xnstep

t¼1

rsft ¼
Xnstep

t¼1

rex
s ft þruf T

t rsût
� �

; ð75Þ

where ft indicates the ductility increment in the tth load increment.
9. Numerical examples

Firstly the results of material shape optimization and multi-
phase layout optimization are compared in terms of two FRC struc-
tures. Secondly an L-shaped plate of FRC is optimized in which not
only horizontal but also vertical fibers are employed. For the prop-
erties of the interface for all examples it is referred to Kato [10].

One purpose of this section is to observe whether multiphase
layout optimization could remedy the deficit of material shape
optimization, namely how the ‘unexploited fibers’ can be avoided
at the final optimization stage, providing additional ductility.



J. Kato, E. Ramm / Engineering Structures 49 (2013) 202–220 213
9.1. Material shape optimization vs. multiphase layout optimization

9.1.1. Deep beam
As the first numerical example the deep beam with four AR-

glass fibers is chosen as depicted in Fig. 11b and the material prop-
erties are given in Fig. 11a. The beam was already investigated in
[12] using carbon fibers which lead to a stiffer and more brittle
behavior than AR-glass.

Due to symmetry only one half of the system is analyzed. Plane-
stress conditions are assumed. The beam thickness is assumed to
be only 1 mm, since no out-of-plane actions are considered. 200
eight-noded finite elements are used for concrete and 68 three-
noded elements for the interface, respectively. The initial fiber
thickness is set to 0.4 mm as shown in Fig. 11b; the fiber geometry
is approximated by a symmetric biquadratic Bézier-spline, see
Fig. 11c. Due to symmetry the locations of the control points p3

and p4 are coupled to p1 and p0, respectively. In addition the y-
coordinate of p1 is set equal to that of p2, and the x-coordinate of
p1 is placed always at the center between the x-coordinates of p0

and p2. Thus the number of design variables for a single fiber geom-
etry is three, i.e. sg1, sg2, and sg3, see Fig. 11c, leading to a total num-
ber of 12. The initial set of the shape design variables is (i)
sg1 = 0.075 (i.e. the x-coordinate of p0 is 0.075 � 400 mm) for all fi-
bers and (ii) sg2 and sg3 are assumed to be 0.15, 0.38, 0.62, and 0.85
for the four fibers. Taking into account that thick concrete covers
(b)

(c)

s 1g

sg2

sg1

sg3

sg1

Fig. 11. Structural situation, (a) material properties, (b) structura
for textile fibers are obsolete, we adopt the lower bound sL = 0.01
and the upper one sU = 0.99 for sg2 and sg3 of all fibers. For the de-
sign variable sg1, the lower and upper bounds are set to sL = 0.01
and sU = 0.4, respectively.

The initial and maximum fiber thicknesses are set to r1 = 0.4
mm and r0 = 0.8 mm in multiphase layout optimization. Thus the
initial set of the material design variables is sr = 0.5 (0 < sr < 1)
and the fiber thickness may vary within 0 mm < r1 < 0.8 mm. The
lower and upper bounds for the material design variables sr are de-
fined as sL = 0.001 and sU = 0.99, respectively. For the semi-analyt-
ical sensitivity analysis a central finite difference scheme with
Ds = 1.0 � 10�7 is adopted so that the perturbation does not violate
both bounds. For the two-phase fiber, the fitting parameter can be
set to ĝ ¼ 1 as mentioned in Section 4.2.

The analysis is carried out with a displacement controlled
method; the control point c is at the lower center of the beam.
The prescribed nodal displacement û (�y-direction) at the control
point is 0.4mm, see Fig. 11b. The total fiber volume is 1.4% and is
held constant for both cases during optimization. Optimization is
continued until the change of the objective function value falls be-
low 1.0 � 10�8. The central finite difference scheme with finite per-
turbation Ds = 1.0 � 10�7 is also applied for the material design
variables.

Fig. 12a is the result obtained by pure material shape optimiza-
tion and Fig. 12b by two-phase layout optimization with a total
κ0

ν

(a) 

(d)
,2

l model, (c) geometrical definition of fiber, and (d) FE mesh.
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(b)

(c)

(d)

Fig. 12. Comparison of optimization results for deep beam, (a) optimized structure (material shape optimization), (b) optimized structure (2-phase layout optimization), (c)
comparison of stress distribution of fiber, and (d) load-displacement curves.
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optimization step number of 445 and 158, respectively. The right side
of both Fig. 12a and b displays the damage distribution of concrete.
In Fig. 12a the lower three fibers are shifted downward to prevent
the concrete from a premature damage propagation after optimization.
One upper fiber is also shifted upward to increase the bending stiffness
of the beam although it is structurally not exploited [12]. The optimized
fiber layout of Fig. 12a although being structurally feasible does not
represent the global minimum, which is a consequence of the underly-
ing non-convex optimization problem. In case of two-phase layout
optimization the fiber material in the upper fiber moved to the lower
fibers and the lower three fibers became thicker (r1� 0.5, 0.7,
0.8 mm) to resist the damage propagation, see Fig. 12b. Fig. 12c shows
the comparison of stress distribution of the fibers after optimization be-
tween both kinds of optimization. Elastic limit tensile strength of fiber
is 504 MPa (=Young’s modulus E (72.0 GPa)� j0 (0.007)), thus fibers
are not yet damaged at this stage. The upper fiber shown in Fig. 12c
(right) does not contribute to the mechanical response since the thick-
ness is almost zero. As a result of the multiphase layout optimization,
the structural ductility increases from 137% to 145%, see Fig. 12d.

9.1.2. Splitting plate
As the next comparison, the splitting plate with three AR-glass

fibers is chosen as shown in Fig. 13a. Again the same material prop-
erties, loading condition, mesh and initial assumption of fiber
geometry are used as in the previous example. 124 finite elements
are used for concrete and 24 elements for the interface. For the
present example the parametric element is restricted to the area
below the cutout section, see Fig. 13a; this means that fibers can-
not be located in the non-design space.

The initial set of the shape design variables is: (i) sg1 = 0.025 and
(ii) sg2 and sg3 are 0.25, 0.50 or 0.75. The initial and the maximum
fiber thicknesses are set to r1 = 0.5 mm and r0 = 1.0 mm, respec-
tively, in multiphase layout optimization. Thus the initial set of
the material design variables is sr = 0.5 (0 < sr < 1) and the fiber
thickness may vary within 0 mm < r1 < 1.0 mm. The fiber volume
is kept constant (0.74%) during the optimization. The prescribed
displacement at control point c is 0.2 mm.

Fig. 13b shows the result obtained by material shape optimiza-
tion only whereas Fig. 13c is the result of two-phase layout
optimization. Total optimization step numbers are 150 and 82,
respectively. In Fig. 13b the middle fiber is also shifted to the upper
part to resist the damage propagation of concrete together with the
upper fiber. The location of the lower fiber stays in the lower part of
the plate although one could expect that it also moves to the cutout
area. Thus this fiber is mechanically unexploited. Anyhow an in-
crease of 37% of structural ductility could be obtained by material
shape optimization, see Fig. 13d. On the contrary, in Fig. 13c all fiber
materials move to the upper edge. The lower fiber has almost zero
thickness. Compared to the elastic tensile strength as introduced
in the previous example, it is apparent that all fibers are not yet
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Fig. 13. Comparison of optimization results for splitting plate, (a) structural model, (b) optimized structure (material shape optimization), (c) optimized structure (2-phase
layout optimization), (d) load-displacement curves, and (e) comparison of stress distribution of fiber.
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damaged at this stage for both cases. For the multiphase layout opti-
mization the structural ductility was further improved to 165%. It
was verified by the above two comparisons that the proposed mul-
tiphase layout optimization can remedy the problem of ‘unex-
ploited’ fibers; it avoids local the minima and provides further
ductility than that of pure material shape optimization. In addition,
it was shown from the two numerical examples that solution of mul-
tiphase layout optimization can be achieved with less total number
of optimization steps than that of material shape optimization.
9.2. L-shape plate

As the final numerical example an L-shaped plate with two-
phase fibers is chosen as displayed in Fig. 14b and the material
properties are given in Fig. 14a. Plane stress conditions are as-
sumed. 192 finite elements are used for concrete and 124 elements
for the interface. In this example the geometry of the reinforce-
ment is approximated by either horizontal or vertical straight fi-
bers, see Fig. 14c. Each fiber has four design variables, i.e. three



κ0

ν
κ0

ν
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Fig. 14. Structural situation of L-shape plate.
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shape design variables sg and one material design variable sr. The
total number of design variables is 48 (4 � 12 fibers).

The initial set of the shape design variables and their bounds are

(i) horizontal long fiber;

sg1 ¼ 0:06; sg3 ¼ 0:94 for all three fibers and
sg2
¼ 0:6=0:75=0:9,

0:01 6 sg1 6 0:25, 0:51=0:53=0:55 6 sg2 6 0:95=0:97=0:99,
0:75 6 sg3

6 0:99,
(ii) horizontal short fiber;
sg1
¼ 0:06; sg3

¼ 0:44 for all three fibers and
sg2 ¼ 0:06=0:25=0:44,
0:01 6 sg1

6 0:1, 0:01=0:03=0:05 6 sg2
6 0:95=0:97=0:99,

0:4 6 sg3 6 0:49,
(iii) vertical long fiber;
sg1 ¼ 0:001; sg3 ¼ 0:94 for all three fibers and
sg2
¼ 0:1=0:25=0:4,

0:001 6 sg1 6 0:0011,
0:01=0:03=0:05 6 sg2

6 0:45=0:47=0:49, 0:75 6 sg3
6 0:99,

(iv) vertical short fiber;

sg1
¼ 0:56; sg3

¼ 0:94 for all three fibers and
sg2 ¼ 0:56=0:75=0:9,
0:51 6 sg1

6 0:6, 0:01=0:03=0:05 6 sg2
6 0:95=0:97=0:99,

0:9 6 sg3
6 0:99.
A thin concrete cover along to the structural boundary is al-
lowed. Furthermore, slightly different lower and upper bounds
are imposed to the three fibers in each group (i)–(iv) in order to
avoid that some fibers concentrate at the same location in the
vicinity of the structural boundary. Thus each sg2

has three kinds
of bounds. Each fiber is continuously defined within two adjacent
subspaces in the parametric element, see Fig. 14d, i.e. either ‘r–
s’ or ‘s–t’, but not allowed to be in the remaining subspace t

or r, respectively. For example the lower horizontal short fiber,
which is defined in the subspace r, can move within the two sub-
spaces ‘r–s’ but cannot move into the subspace t.

The initial fiber thickness is r1 = 0.5 mm and the maximum
thickness is prescribed by r0 = 1.0 mm. Thus the initial set of the
material design variables is sr=0.5 for all fibers. The range of fiber
thickness is 0 mm < r1 < 1 mm. The lower and upper bounds for
the material design variables sr are defined as sL = 0.001 and
sU = 0.99, respectively.

The analyses are carried out with a displacement controlled
method; the control point c is the upper right corner of the plate,
see Fig. 14a. For comparison the structure is optimized based on
either a linear elastic or a damage model. The prescribed nodal dis-
placement û (y-direction) at the control point is 0.05 mm for the
linear elastic case and either 1.5 mm or 3 mm for the damage case.
The displacement is uniformly applied along the line between
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points c and d. The fiber volume is kept constant (1%) during the
optimization.

Fig. 15a shows the optimized fiber layout and Fig. 15b is the
stress distribution of one-dimensional fibers based on a linear elas-
tic response. Since concrete gets easily damaged under small ten-
sion deformation, only small loading ðû ¼ 0:05 mmÞ could be
applied in order to ensure linear elastic response. Thus, the range
of the axial stress of fiber is relatively small, see Fig. 15b. The elas-
tic tensile strength of fiber is 434 MPa (=Young’s modulus E
(62.0 GPa) � j0 (0.007)). Optimization was successful at the
394th step. After optimization, all long fibers are shifted to the
Fig. 15. Results of optimization for linear elastic response, (a)

Fig. 16. Results of two-phase layout optimization for materially nonlinear response:
distribution of initial structure, (c) fiber layout of optimized structure, (d) damage distr
structural boundary to increase the bending stiffness. Most of the
fiber material in short fibers moved to the domain of the long fi-
bers; thus the thickness r1 of all long fibers reached the maximum
size r0 = 1 mm. This result is reasonable from structural point of
view. As a result, 4% of ductility was increased.

Fig. 16 introduces the results of optimization based on a nonlin-
ear structural response for the prescribed displacement
û ¼ 1:5 mm. Fig. 16b is the damage distribution of the initial struc-
ture and Fig. 16c–e represents the optimized fiber layout, its dam-
age distribution and stress distribution of fiber, respectively. In this
case optimization was finished at the 136th step. In the initial
optimized fiber layout and (b) stress distribution of fibers.

(prescribed displacement û ¼ 1:5 mm), (a) load displacement curves, (b) damage
ibution of optimized structure, and (e) stress distribution of fiber.



Fig. 17. Results of two-phase layout optimization for materially nonlinear response: (prescribed displacement û ¼ 3 mm), (a) load displacement curves, (b) damage
distribution of initial structure, (c) fiber layout of optimized structure, (d) damage distribution of optimized structure, and (e) stress distribution of fiber.
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structure the damage of concrete initiates at the reentrant corner
and spreads mainly in the vicinity of the edge, see Fig. 16b. As
can be seen in Fig. 16b, two horizontal long fibers moved to the
lower part in order to reduce the damage in the vicinity of the
reentrant corner; three vertical long fibers are shifted to the right
side. Looking deeper at Fig. 16d, one can see that the damage of
concrete in the optimized structure propagates entirely from the
reentrant corner to the fixed boundary of the L-shape plate and
the damage level is less than that of the initial structure. It can
be recognized from Fig. 16d and e that although some fibers of
the initial structure are damaged, all fibers of the optimized struc-
ture are still in the elastic range at this stage. As a result the struc-
tural ductility is increased by 53%, see Fig. 16a.

Analogously, Fig. 17 shows the results of optimization for the
prescribed displacement û ¼ 3 mm. The total optimization step
number was 209. Comparing Fig. 17b with Fig. 16b, one can ob-
serve that the initial structure fails with a distinct localization
since the damage evolves only around the reentrant corner with-
out distributing the stresses sufficiently to the other parts of the
plate. The fiber layout of the optimized structure Fig. 17c shows
a similar layout to that of Fig. 16c. However the response is differ-
ent in that some fibers got damaged even in the final optimization
stage; furthermore the left vertical long fiber is shifted to the inner
part of the structure reducing the damage propagation of concrete.
It can be recognized that some fibers are damaged for both the ini-
tial and the optimized structure at this stage, however level cer-
tainly decreases by obtaining the optimized fiber layout. The
damage and stress distribution of fibers in Fig. 17d and e shows
that severely damaged fiber material is in particular in the soften-
ing regime, and that its stress is below the elastic limit strength
(434 MPa). This implies that the nonlinear structural response of
FRC could be properly represented by the analyses. As a result
the structural ductility could be increased by 102%, see Fig. 16a.
To summarize, it was verified that the proposed multiphase lay-
out optimization has a great possibility to improve the ductility of
FRC with a reasonable fiber layout.

10. Conclusions

A method for multiphase layout optimization was developed to
maximize the structural ductility of Fiber Reinforced Composites
such as FRC. For this objective it is of course mandatory to consider
material nonlinearities. Therefore an isotropic gradient enhanced
damage model is applied for both matrix (concrete) and fibers
and a discrete bond model for the interface between matrix and
fiber.

The proposed method combining multiphase material and
material shape optimization previously separately applied allows
for additional design freedom. The approach was able to remedy
one of the problems of material shape optimization in which the
effect of some fibers was not fully exploited. Thus this scheme
can be denoted as a generalization of material optimization meth-
ods in that both ‘material’ and ‘geometrical’ design problems are
solved simultaneously. Although the inclusion of different kinds
of design variables often results in non-monotonic, sometimes
highly nonlinear design functions with respect to the design vari-
ables, this problem could be solved by choosing a proper optimiza-
tion method; in this study the MMA provided reliable optimization
solutions.

The performance of the proposed method was demonstrated by
numerical examples; it was shown that the ‘unexploited fibers’
recognized in material shape optimization vanished successfully
so that the ductility could be further increased. The increase of
ductility is in particular important for situations where sufficient
energy absorption plays a substantial role, as for example under
earthquake excitation.
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Appendix A. List of symbols

The following list of symbols is added for a better understand-
ing of the notation used in the text.
(�)(n)
 iteration index in path-dependent algorithms

(�)t, (�)t+1
 values at reference and actual time step,

respectively

(�)e
 values on element level

(�)x, (�)y
 vector component of x- and y-direction,

respectively

(�)c, (�)f,

(�)i

term related to concrete matrix, fiber and
interface between matrix and fiber, respectively
(�)c+f
 term relevant to concrete matrix and fiber

d(�), d(�),

D(�)

variation, infinitesimal increment, increment
value, respectively
Gradient operators, mathematical function
rs(�)
 partial derivatives with respect to an optimization
variable ŝi, regarding other variables ŝj
for j – i as constant

rex

s ð�Þ
 explicit part of partial derivatives rs(�)

r2
 Laplacean operator

h�i
 macauley bracket: hx i = (x + jxj)/2
Optimization values, functions
s; ŝ
 design function (design variable) and vector of
optimization variables, respectively
sr; ŝr
 design function for material design and vector of
material design variables, respectively
sg ; ŝg
 design function for shape design and vector of shape
design variables, respectively
Geometry
N; eN; N
 shape function for displacement, non-local
equivalent strain, interfacial slip field, respectively
Kinematic measures
uL
 local displacement field along axis of one-
dimensional fiber
eL, eL
 strain tensor in local coordinate system and local
strain field along axis of fiber, respectively
epre
 prescribed strain

e
 nodal non-local strain vector

�d
 nodal slip vector (nodal relative displacement

vector)
B; eB; B
 discretized constant differential operator for
displacement, non-local equivalent strain interfacial

slip field, respectively
Forces, loads, stresses
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rL, rL
 Cauchy stress tensor in local coordinate system and
local stress along axis of fiber, respectively
t̂; t0
 prescribed surface traction vector and reference
surface traction vector, respectively
fint,
fext
internal vector and external force vector,
respectively
Materials
Ceff ;Ced;CT
 effective material stiffness tensor or matrix,
elasto-damage secant material

stiffness tensor or matrix, tangential material
stiffness tensor or matrix, respectively
Td, Te, Tr
 rotation matrix, strain transformation matrix,
stress transformation matrix, respectively
g; ĝ
 penalization factor and fitting parameter,
respectively
ui
1;u

i
2;u

i
3

slip length defining change of interfacial
behavior
kL
 tangential stiffness of interface

rm,0, rm
 initial and current adhesion strength

rf,0, rf
 initial and current sliding friction strength

rs, hs
 radius and surface roughness of a fiber,

respectively

ar, af
 constants assuming lateral deformation of fiber

fc
 uniaxial compressive strength of concrete

es
 uniaxial strain of fiber

Rs
 radius of curvature at slip ui

1

rR
 stress perpendicular to fiber
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